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Abstract

Multi-drone operations face significant efficiency challenges when launch pad locations
are predetermined without optimization, leading to suboptimal route configurations and
increased travel distances. This research addresses launch pad positioning as a continu-
ous planar location-routing problem (PLRP), developing a genetic algorithm framework
integrated with multiple Traveling Salesman Problem (mTSP) solvers to optimize launch
pad coordinates within operational areas. The methodology was evaluated through ex-
tensive experimentation involving over 17 million test executions across varying problem
complexities and compared against brute-force optimization, Particle Swarm Optimization
(PSO), and simulated annealing (SA) approaches. The results demonstrate that the genetic
algorithm achieves 97–100% solution accuracy relative to exhaustive search methods while
reducing computational requirements by four orders of magnitude, requiring an average
of 527 iterations compared to 30,000 for PSO and 1000 for SA. Smart initialization strategies
and adaptive termination criteria provide additional performance enhancements, reducing
computational effort by 94% while maintaining 98.8% solution quality. Statistical validation
confirms systematic improvements across all tested scenarios. This research establishes
a validated methodological framework for continuous launch pad optimization in UAV
operations, providing practical insights for real-world applications where both solution
quality and computational efficiency are critical operational factors while acknowledging
the simplified energy model limitations that warrant future research into more complex
operational dynamics.

Keywords: path planning optimization; drone path planning; starting point selection;
launch pad positioning; mTSP; genetic algorithms; PLRP; location-routing problem

1. Introduction
Path planning in drones is an essential aspect in unmanned aerial vehicle (UAV) oper-

ations, ensuring that the drone flies efficiently while meeting the mission requirements [1].
Applications range from disaster relief and agricultural monitoring to logistics and surveil-
lance, where effective path planning directly contributes to operational success by optimiz-
ing resource utilization, such as battery life and time [2].

As drone technology advances, path planning has become an interdisciplinary research
area by incorporating robotics, artificial intelligence (AI), mathematics, and GISs [3,4].
Nonetheless, the main focus still remains on calculating the best routes from start to
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destination, taking into account mission-specific factors. From the delivery of medical
supplies to disaster-stricken areas to real-time crop monitoring, path planning is key to
improving efficiency and reducing costs in UAV operations.

Motivation & Contribution

The rapid growth of drone applications presents both opportunities and challenges in
the realm of path planning. Modern applications demand innovative solutions that can
handle increasing operational complexities, such as multi-drone coordination, real-time
environmental adaptability, and energy efficiency. These challenges underscore the need
for robust path-planning algorithms that not only optimize routes but also account for
constraints like terrain, weather, and communication reliability.

One critical motivator for path-planning optimization is energy efficiency. Drones
have limited battery capacity, which directly affects their operational range. Path-planning
algorithms that minimize travel distance and energy consumption can significantly extend
mission durations and expand the scope of applications [1,5]. To address this challenge,
we establish a computational framework using travel distance minimization as the opti-
mization objective, acknowledging that comprehensive energy optimization would require
integration of aspects such as wind dynamics, terrain elevation, battery characteristics,
and flight maneuvers as discussed in Section 4.5. This work contributes to this ongo-
ing effort by consolidating the latest findings and methodologies in drone path planning
optimization. More specifically, the key contributions of this work can be summarized
as follows:

• Formulates UAV launch pad positioning as a planar location-routing problem and
demonstrates genetic algorithm effectiveness in continuous space optimization for
multi-drone operations.

• Provides a comprehensive systematic comparison of a genetic algorithm against both
exhaustive search methods and alternative metaheuristics (PSO, SA) for optimizing
launch pad location in UAV applications, establishing the GA’s superior computational
efficiency despite marginally lower accuracy compared to PSO.

• Introduces and evaluates smart initialization and adaptive termination techniques for
genetic algorithms in the LRP context, demonstrating modest but consistent improve-
ments in convergence characteristics while maintaining solution quality.

• Provides a validated methodological framework with empirical benchmarks enabling
practitioners to select appropriate optimization approaches based on accuracy require-
ments versus computational constraints.

• Enhances the framework presented in [2] with multiple algorithmic approaches that
aid in the prediction of optimal launch pad positioning.

• Establishes computational benchmarks and parameter optimization guidelines for
metaheuristic applications in continuous location-routing problems, contributing to
the broader UAV optimization literature.

The structure of the paper is as follows: Section 2 reviews the relevant literature
on drone path planning. Section 3 introduces the proposed framework, while Section 4
outlines the experimental setup, presents the results, and provides an evaluation of the
findings. The paper concludes in Section 5.

2. Background and Related Work
Recent research on drone path planning has focused on various innovative methodolo-

gies to enhance the operational efficiency of UAVs in complex and dynamic environments.
With the increasingly intricate operational landscape of drones, researchers have developed
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a range of strategies to address the challenges associated with path planning, including
obstacle avoidance, energy efficiency, and environmental adaptability.

2.1. Planar Location-Routing Problems in UAV Applications

The foundational work of Drezner and Wesolowsky [6–8] established the theoretical
and methodological foundations for location-routing problems in continuous space, in-
troducing trajectory-based optimization methods and formal integration of location and
routing considerations that became cornerstones of modern planar location-routing theory.
Their pioneering research demonstrated that treating location and routing decisions as
integrated optimization problems rather than sequential subproblems yields significantly
superior solutions.

The problem addressed in this study falls within the broader framework of planar
location-routing problems, which integrate two interrelated optimization tasks: determin-
ing the optimal placement of facilities in the continuous plane and designing efficient routes
from those facilities to serve geographically dispersed locations. Unlike discrete location-
routing problems that restrict facility locations to predetermined candidate sites, a planar
LRP allows facilities to be positioned anywhere within a continuous two-dimensional
space, creating a nonlinear optimization challenge that captures the true interdependency
between facility positioning and route optimization.

In the context of UAV operations, this translates to jointly optimizing launch pad
positioning and flight path planning, where the launch pad coordinates (x,y) can be po-
sitioned anywhere within the operational area rather than being constrained to existing
infrastructure locations. This continuous formulation is particularly relevant for drone
applications where temporary or mobile launch platforms can be deployed flexibly based
on mission requirements.

The foundational work of Salhi and Rand [9] established that treating location and
routing decisions independently can lead to significantly suboptimal solutions, demon-
strating the critical importance of joint optimization approaches. Their alternating heuristic
method, which iteratively solves Weber-type location subproblems and vehicle routing
subproblems, forms the theoretical foundation for many contemporary PLRP solution
methodologies. Subsequent research by Nagy and Salhi [10] provided comprehensive
surveys of location-routing variants, highlighting that the single-facility continuous PLRP
remains one of the most studied configurations, often addressed through Weiszfeld-routing
alternation methods or metaheuristic approaches.

2.2. UAV Path Planning Optimization Methodologies

One significant area of advancement is the development of algorithms that optimize
path planning under various constraints. Fan et al. [11] introduced a path planning method
that uses Dubins paths to ensure smooth turns making sure to avoid restricted areas and di-
rectional constraints, thus improving mission efficiency for flight plans with long distances.
Similarly, Xiong et al. [12] introduced a hybrid approach combining Improved Symbiotic
Organisms Search (ISOS) with Sine–Cosine Particle Swarm Optimization (SCPSO) methods,
enhancing the precision and stability of path planning in three-dimensional environments.
These methods highlight the importance of adapting path planning algorithms to the
specific operational contexts of drones.

Moreover, the integration of advanced technologies such as the Internet of Drones
(IoD) [13] has been explored to optimize UAV path planning further. Shirabayashi [14]
discusses the implications of IoD on path planning strategies, emphasizing the need for
mathematical models that can accommodate the complexities introduced by interconnected
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drone networks. This integration not only facilitates better communication among drones
but also enhances their ability to navigate dynamically changing environments.

2.3. Environmental Adaptability and Swarm Intelligence

The consideration of environmental factors is also critical in recent studies. Jones et al. [15]
provide a comprehensive survey on the impact of environmental complexity on UAV path
planning, identifying key challenges and proposing future research directions. The survey
therein underscores the necessity for path-planning algorithms that can adapt to real-time
changes in the environment, ensuring safe and efficient drone operations.

The application of swarm intelligence techniques has emerged as a promising avenue
for enhancing drone path planning. For example, Wu et al. [16] propose a swarm-based 4D
path planning method tailored for urban environments, which addresses the complexities
associated with multiple drones operating simultaneously. This approach not only im-
proves flight safety but also optimizes the overall efficiency of drone operations in densely
populated areas.

2.4. Green Drone Delivery and Energy-Aware Routing

Recent research has increasingly focused on minimizing energy consumption rather
than simply optimizing distance or time in drone delivery systems. Lu et al. [17] formulated
the green drone multi-package delivery routing problem (GDMPDRP), establishing a
mixed-integer linear programming model where total energy consumption serves as the
primary objective function. Their work demonstrates a critical insight: the shortest delivery
path does not necessarily consume the lowest energy as energy consumption is influenced
by both distance and payload weight variations throughout the route. They developed
two hybrid algorithms—ACWS-SCIP (combining Advanced Clarke and Wright Saving with
the SCIP exact solver) and ACWS-ICSA (integrating an Improved Crow Search Algorithm)—
achieving near-optimal solutions while reducing computational time by over 95% compared
to traditional genetic algorithms and particle swarm optimization.

While Lu et al.’s work provides a robust framework for energy-aware routing optimiza-
tion with explicit modeling of payload-dependent battery drain, their problem formulation
assumes fixed launch pad locations as given parameters. This constraint represents a sig-
nificant limitation in real-world deployment scenarios where temporary or mobile launch
platforms can be positioned flexibly. Our research addresses this gap by treating launch pad
coordinates as continuous decision variables rather than fixed parameters, thereby extending
the energy-aware optimization framework to encompass both facility location and vehicle
routing decisions simultaneously, capturing the full flexibility available in UAV deployment
while maintaining computational tractability through metaheuristic approaches.

2.5. Energy-Aware Planning and Launch Pad Optimization

In addition, energy efficiency remains a pivotal concern in drone path planning.
Diller’s [18] research emphasizes the trade-off between speed and energy consumption,
advocating for path-planning approaches that account for energy constraints while maxi-
mizing operational speed. This focus on energy-aware planning is crucial for extending
the operational range of drones, particularly in applications such as surveillance and
agricultural monitoring.

In the same area, Gasteratos and Karydis [2] proposed a path planning optimization
technique whereby the starting point distances can be reduced, leading to better energy
management and operational efficiency. Their research shows that when the launch pad
is relocated, it minimizes the distance that drones must travel between the launch pad
and their first station, as well as the distance from their last station back to the launch pad.
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This reduction directly translates into lower energy consumption and shorter flight times,
enhancing the overall efficiency of the operation.

2.6. Metaheuristic Approaches to PLRP

Recent comprehensive surveys of truck–drone routing problems reveal that meta-
heuristic algorithms dominate the solution landscape, accounting for 43% of all solution
methodologies [19]. Within metaheuristics, neighborhood search methods are most preva-
lent (51%), followed by evolutionary approaches (23%) and swarm intelligence methods
(17%). Genetic algorithms represent the dominant evolutionary technique, comprising
71% of evolutionary approaches employed [19]. This distribution pattern closely aligns
with the planar LRP domain, where genetic algorithms and variable neighborhood search
have proven most effective for continuous location-routing optimization.

The success of genetic algorithms in truck–drone applications stems from their abil-
ity to handle the dual optimization challenge of vehicle routing and facility positioning
through chromosome encodings that represent both route sequences and continuous coor-
dinates [19]. This parallel directly supports our application of genetic algorithms to UAV
launch pad positioning, where similar dual optimization challenges exist.

Variable Neighborhood Search (VNS) approaches, as explored by Mladenović and
Brimberg [20], offer systematic mechanisms for escaping local optima in continuous
location-allocation problems. These methodologies systematically explore neighborhoods of
increasing complexity, providing robust frameworks that can be adapted to UAV deployment
scenarios where both location and routing decisions must be optimized simultaneously.

A recent survey by Mara et al. [21] highlights that continuous (planar) variants of the
location-routing problem (PLRP) remain a niche area (only 2%) within the broader LRP
research landscape. These models are typically addressed using metaheuristic or hybrid
heuristic frameworks as exact solution methods remain limited to small-scale instances due
to the mixed-integer nonlinear programming complexity introduced by Euclidean distance
calculations in continuous space.

2.7. Research Gap and Contribution Positioning

While existing research has made significant advances in both discrete UAV path
planning and general planar location-routing problems, several critical gaps remain
unaddressed. Most UAV path planning research, including recent energy-aware
formulations [17], assumes fixed launch locations, while planar LRP studies typically
focus on generic vehicle routing without considering the unique energy consumption
characteristics and operational constraints of unmanned aerial systems.

Lu et al. [17] demonstrate that energy-optimal drone routes differ systematically from
distance-optimal routes due to payload–weight interactions, establishing the importance
of energy-aware objectives in drone delivery optimization. However, their formulation
treats the launch pad location as an exogenous parameter, limiting the solution space to
routing decisions alone. In practice, launch pad positioning significantly affects both the
initial/final flight segments and the overall route structure determined by the mTSP algo-
rithm as suboptimal launch pad placement can force longer routes or inefficient customer
assignments even when routing is optimized.

Our work bridges this gap by formulating UAV launch pad positioning as a planar
location-routing problem and demonstrating that genetic algorithm-based approaches
can efficiently solve this continuous optimization challenge. By allowing launch pad
coordinates to vary continuously within the operational area rather than being restricted to
predetermined locations, our methodology captures the full flexibility available in UAV
deployment scenarios while maintaining computational tractability through metaheuristic
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optimization techniques. This represents a natural extension of the energy-aware routing
framework established by Lu et al., addressing the coupled optimization of both facility
location and route assignment for multi-drone operations.

3. Proposed Method
The impact of launch pad repositioning as described by Gasteratos and Karydis

in their work [2] goes beyond improving the initial and final segments of each drone’s
route. The mTSP [22,23] algorithm, which is designed to minimize the total travel distance
across multiple drones, calculates the optimal routes based on a predefined starting point,
the launch pad, which is common to all drones. Changing the launch pad to a new location
and running the algorithm again will generate entirely different route configurations.
For instance, relocating the launch pad closer to a cluster of sensor stations may lead the
algorithm to reassign some stations to different drones, resulting in shorter and more
efficient routes overall.

This flexibility in route optimization highlights a critical aspect of the mTSP algorithm:
it continuously seeks to minimize the total travel distance by exploring alternative route
structures. When the launch pad is repositioned, the algorithm evaluates how the new
location affects the travel distances between the sensor stations and adjusts the routes
accordingly, as shown in Figure 1. This process not only reduces the travel distance for
individual drones but also balances the workload among the drones more effectively,
preventing any single drone from being overburdened with a disproportionately long route.
This means that repositioning the launch pad introduces an opportunity for the algorithm
to explore different route combinations that may not have been considered optimal under
the previous configuration.
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Figure 1. Changing the launch pad position. (a) Ten sensor stations (S1.. S10) in a field. (b) Applying
mTSP on (a) using an arbitrary launch pad and 3 routes. The distances d(i,j) represent the sequential
path segments for each drone i, where d(i,1) is the distance from the launch pad to the first assigned
station, d(i,j) for j > 1 represents the distance between consecutive stations, and the final segment
shows the return distance to the launch pad. (c) Scenario (b) is repeated using a different launch pad,
showing how repositioning affects route distances and assignments. (d) Similar repetition of (b) but
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with a completely different launch pad location, further demonstrating the impact of launch pad
positioning on total traveled distances. Different colored lines denote planned drone trajectories.

These findings emphasize that the launch pad’s location is not merely a logistical deci-
sion but a critical variable in the optimization process. Repositioning allows the algorithm
to explore new route combinations, often resulting in better performance by minimizing
redundant travel distances. This flexibility underscores the role of adaptive deployment
strategies in enhancing operational efficiency for drone-based data collection operations.
In light of these considerations, our research endeavors to explore methodologies for
determining the most advantageous launch pad location for a specified flight plan.

While the depot location within VRP formulations is well studied as discussed in
Section 2, many such methods either (a) restrict depot candidates to a small discrete set,
(b) ignore the combinatorial routing subproblem (using a linear-assignment surrogate),
or (c) assume simplistic energy models (e.g., Euclidean distance without UAV dynamics).
In contrast, our algorithm (i) searches over every point in the convex hull of sensor stations
(continuous domain), (ii) solves an exact or near-exact mTSP (in the lower level) to capture
true combinatorial routing costs, and (iii) introduces an adaptive termination rule for on-
mission feasibility. To our knowledge, no prior work addresses all three simultaneously
for UAVs.

3.1. Establishing the Ground Truth

The methodology developed in this study must be validated against the ground
truth to ensure measurable and reliable results. The initial step in this process is to estab-
lish the ground truth for the scenarios under consideration. This involves identifying a
methodology that consistently identifies the optimal starting point for the area of interest
while temporarily disregarding the computational time required to achieve this outcome.
The worst-case scenario in terms of time complexity is the application of the brute-force
method, which involves evaluating every potential point in the area to determine the
optimal starting point. Although this method is computationally expensive, it guarantees
the identification of the best starting point.

For instance, consider a scenario where sensor stations are distributed across a field,
as illustrated in Figure 1a, with dimensions of 1496 units in length and 571 units in width.
The brute-force approach would require running the mTSP algorithm 1496 × 571 = 854,216 times
to evaluate each point in the 2D Euclidean space where the sensor stations are located.
Despite the significant computational expense, this method is crucial as it ensures the
determination of the optimal starting point, leading to the minimal total traveled distance
when the mTSP is applied.

Using Equations (2) and (3) as defined by Cheikhrouhou and Khoufi in their work [23],
the optimal starting point can be defined as the one with the minimum total traveled
distance after applying mTSP in the form of

Optimal Starting Point = arg min
j
(TotalDistancej) (1)

whereby the total distance for x drones in a flight plan for a particular starting point j is
defined as

TotalDistancej =
x

∑
i=1

D(RouteUi )j (2)

and the Route distance D of a drone Ui is defined as the total distance traveled by the
drone, starting from its initial point H, visiting the assigned ground stations Si1 , Si2 , . . . , Sin
sequentially in the given order, and then returning to H.
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D(RouteUi )j = D(H, Si1) +
n−1

∑
k=1

D(Sik , Sik+1
) + D(Sin , H) (3)

3.2. The Implementation of GA with mTSP

In this study, we address the challenge of finding the optimal starting point in a sensor
network distribution, where the computational cost of using brute-force methods can
be prohibitive. The brute-force approach guarantees the optimal solution by evaluating
every potential starting point, leading to a time complexity proportional to the number
of possible evaluations (hundreds of thousands). While this method ensures accuracy, its
computational expense grows significantly with larger problem sizes, making it inefficient
for large-scale applications. Therefore, it is essential to explore alternative methods that
can provide optimal or near-optimal solutions with significantly lower computational cost.

3.2.1. Rationale for Genetic Algorithm Selection

We chose genetic algorithms as our optimization approach for several compelling
reasons that distinguish them from other metaheuristic alternatives such as PSO, Ant
Colony Optimization (ACO), and SA [19]. The selection of the GA represents a strategic
decision based on both theoretical considerations and practical implementation advantages.

The primary motivation for selecting the GA lies in its natural modularity with existing
mTSP fitness evaluation frameworks. Genetic algorithms inherently allow us to encode
the launch pad coordinates as real-valued genes within a chromosome structure, enabling
direct integration with our established mTSP solver for fitness computation. This approach
maintains clean separation between the continuous location optimization and discrete
routing evaluation, where each candidate chromosome representing launch pad coordinates
can be directly passed to the mTSP algorithm to determine total travel distance. In contrast,
alternative metaheuristics such as PSO [24] or Differential Evolution [25] would necessitate
additional translation mechanisms to map continuous particle positions into discrete route
assignments, potentially requiring ranking heuristics or nearest-neighbor approaches that
introduce computational overhead and approximation errors.

The literature precedence further supports our choice of genetic algorithms for inte-
grated location-routing problems. Comprehensive studies by Kang et al. [26] in their exact
algorithm for heterogeneous drone-truck routing problems have demonstrated the effec-
tiveness of GA-mTSP hybrid approaches in similar combinatorial optimization contexts.
Additionally, Luo et al.’s [27] survey of truck–drone routing problems and Fangs et al.’s [28]
recent advances in multi-traveling salesman algorithms for UAV swarms have consistently
validated the performance of genetic algorithm frameworks when coupled with mTSP
solvers. These established methodologies provide a proven template that facilitates direct
comparison against brute-force ground truth while ensuring reproducible results.

Genetic algorithms offer an inherent balance between exploration and exploitation
that proves particularly valuable for combinatorial problems like mTSP coupled with
continuous location variables. The crossover operations enable exploration of new solution
regions by combining beneficial traits from different parent solutions, while mutation
operators maintain population diversity and prevent premature convergence. This bal-
anced approach has demonstrated consistent success in handling the dual nature of our
optimization problem, where both continuous coordinate optimization and discrete routing
assignments must be simultaneously optimized.
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3.2.2. The Approach

To implement this approach, we enhanced the mTSP modeling framework described
in [2] and introduced two additional techniques to identify the optimal starting point:
brute-force and GA-based methods. The brute-force approach was straightforward to
implement as it involved reusing existing functionality. To implement the GA, we mapped
its key characteristics to the mTSP problem, detailed next, and utilized the GeneticSharp
library [29], which facilitates the development of applications using genetic algorithms.

A genetic algorithm requires several key features to function effectively [30]. First, it
needs a method to represent potential solutions to the problem (the chromosome in GA
terms). We implemented the chromosome in a way that encapsulates all the necessary
information for evaluating a solution, such as the coordinates X and Y of the starting point.

Second, a mechanism to initialize a population of these solutions was implemented.
This population serves as the starting point for the evolutionary process and should
ideally cover a diverse range of possibilities to ensure a broad exploration of the solution
space. The population initialization in our implementation employs an adaptive sizing
strategy with bounds set between 50 and 100 chromosomes. This approach, supported
by the GeneticSharp library, begins with a minimum population of 50 individuals and
can dynamically expand up to 100 based on diversity metrics and convergence behavior.
The adaptive mechanism balances computational efficiency (smaller populations converge
faster) against solution space exploration (larger populations maintain diversity).

Another essential feature is the fitness function that quantifies the quality of each
solution. This function provides a measurable way to compare solutions, guiding the
algorithm toward better outcomes. This was implemented by utilizing the total distance
calculated by mTSP.

The GA also needs a method to select solutions for reproduction. For this, the elite
selection [31] was used, which determines which solutions are more likely to contribute
their “genes” to the next generation, favoring those with higher fitness. This selection
process helps to preserve the best solutions found so far and prevents the GA from losing
valuable genetic material during the evolutionary process.

To create new solutions, the algorithm relies on crossover and mutation operators [32].
Crossover combines parts of two parent solutions to produce offspring, facilitating the
exchange of beneficial traits. Uniform crossover, which utilizes a fixed mixing ratio between
two parents, was used in this implementation. Similarly, mutation introduces small random
changes to individual solutions, helping the algorithm explore new areas of the solution
space and maintain diversity. For this, the uniform mutation, which replaces the value of
the chosen gene with a uniform random value, was used.

Finally, the algorithm requires a termination condition to decide when to stop the
evolutionary process. Setting this parameter involves balancing computational efficiency
against solution quality. When the algorithm terminates prematurely, potential improve-
ments remain unexplored; conversely, excessive iterations often yield diminishing returns
while consuming valuable computational resources.

To identify an optimal termination point for the number of generations, we conducted
sensitivity testing (40,000 tests) across multiple threshold values (50, 100, 200, 400 and 800).
Analysis of the resulting data (Figure 2) revealed a consistent pattern: higher generation
counts produced incremental performance improvements, with accuracy metrics rising
from 99.2% at 50 generations to 99.6% at 800 generations. However, the computational
cost increased substantially and non-linearly, with attempt counts rising from 1843 at
50 generations to 29,963 at 800 generations.

The relationship between performance gain and computational expenditure demon-
strated clear diminishing returns beyond 100 generations. At this threshold, the algorithm
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achieved 99.3% accuracy while requiring only 3713 attempts, representing an optimal
balance between solution quality and computational efficiency. Based on these findings, we
implemented a straightforward termination condition that stops the evolutionary process
after completing 100 generations, regardless of other convergence indicators.
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Figure 2. Generation number–termination condition–sensitivity analysis (40,000 tests). number of
attempts (left axis, dashed line); performance achieved (right axis, solid line).

The implementation is as follows: Algorithm 1 shows the setup that is used within the
FindOptimalStartingPoint method to initialize the GeneticSharp library and then get the
result by calling the GA.Start() method in line 9.

Algorithm 1 FindOptimalStartingPoint

Require: List of coordinates P, Number of routes R
Ensure: Optimal starting coordinate, total distance

1: f itness_ f unction← new MtspFitness(P, R)
2: selection_proccess← EliteSelection()
3: crossover_operator ← UniformCrossover()
4: mutation_operator ← UniformMutation(true)
5: adam_chromosome← new MtspChromosome()
6: initial_population← new Population(adam_chromosome)
7: GA ← new GeneticAlgorithm(initial_population, f itness_ f unction, selection_proccess,

crossover_operator, mutation_operator)
8: GA.Termination← GenerationNumberTermination(100)
9: GA.Start()

10: bestChromosome← GA.BestChromosome
11: x ← bestChromosome.GetGene(0).Value
12: y← bestChromosome.GetGene(1).Value
13: return MtspGeneticResult:

• BestPoint← (x, y)
• BestDistance← −bestChromosome.Fitness.Value

Algorithm 2 shows the evolutionary process of obtaining the optimal starting point.
The algorithm iteratively evolves a population through selection, crossover, and mutation,
evaluating fitness at each step to identify the best solution.

A summary of the GA’s parameter settings is provided in Table 1.
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Figure 3 provides an overview of the entire process. The outer loop generates and
refines potential launch pad locations through a genetic algorithm (GA). For each candidate
location, the inner loop determines the most efficient drone routes by solving the mTSP,
calculating the total travel distance. The fitness of each candidate is evaluated based on this
total distance, with the goal of minimizing it. Finally, the algorithm outputs the optimal
launch pad location along with its corresponding minimum total distance.

Algorithm 2 Genetic algorithm for optimal starting point in MTSP

1: Initialize population using CustomPopulation.CreateInitialGeneration()
2: for all chromosome in population do
3: Evaluate fitness using MtspFitness.Evaluate()
4: end for
5: while termination condition not met do
6: Select parents using EliteSelection
7: Perform crossover using UniformCrossover
8: Apply mutation using UniformMutation
9: for all offspring do

10: Evaluate fitness using MtspFitness.Evaluate()
11: end for
12: Replace population with new generation
13: Update best chromosome
14: end while
15: return Best starting point coordinate and best fitness (distance)

Initialize Population

Select Launch Pad

Optimize Routes from Launch Pad
Return Total Distance (Fitness)

Converged?

Return Optimal Launch Pad

Start

End

No

Yes

mTSP Solver

Figure 3. A high-level view of the complete operational framework.
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Table 1. Genetic algorithm configuration for mTSP.

Parameter Value/Description

Fitness Function mTSP total distance
Selection Process Elite selection
Crossover Operator Uniform crossover

Probability 0.75 per chromosome pair (default)
Mix probability 0.5 per gene (default)

Mutation Operator Uniform mutation
Probability 0.1 (default)

Initial Population 50 (minimum) to 100 (maximum, adaptive)
Generations 100

4. Experimental Evaluation
4.1. The Setup

As mentioned in the previous section, the mTSP modeling framework in [2] was
enhanced to include the brute-force and GA-based methods using the .NET framework
with C#. The hardware specifications used for the tests were as follows: 512 GB of memory,
an AMD® Ryzen Threadripper Pro 5955WX (AMD, Santa Clara, CA, USA) processor with
16 cores and 32 threads operating at 4.0 GHz, and four NVIDIA GA102GL [RTX A5000]
(NVIDIA, Santa Clara, CA, USA) graphics cards.

To facilitate a more straightforward comparison between brute-force and the GA,
points outside the bounding box encompassing all sensor stations were excluded as these
points contribute to increased total traveled distances rather than reduced.

A total of 80 representative flight plans, each corresponding to a unique scenario, were
developed. These scenarios varied in the number of stations, which were set at 5, 10, 15, 20,
25, 45, 60, or 100, and incorporated between 1 and 10 drones. Each flight plan was repeated
9 additional times, for a total of 10 iterations per scenario, to account for the stochas-
tic nature of the random station locations. Consequently, the study included a total of
80 scenarios × 10 iterations = 800 tests.

4.2. The Results

A total of 800 tests were conducted, each executed twice: once using brute-force and
once using the GA. For each test, measurements were recorded for both the brute-force and
GA approaches, specifically focusing on the total distance traveled and the time required
to identify the optimal starting point.

In order to test the effectiveness and efficiency of the proposed methodology, this
work utilizes the following two metrics: the performance degree (Equation (4)) of the
GA approach in relation to the ground truth provided by the brute-force method and the
TimeRatio (Equation (5)) of the GA approach in relation to the ground truth provided by
the brute-force method. Accordingly, TimeRatio values close to 0 indicate the superiority of
the GA approach, and values close to 1 indicate the equivalence of the GA and brute-force
approaches, while values greater than 1 show the superiority of the brute-force approach
over the GA.

It is important to clarify what might initially appear counterintuitive in the equations.
Since we are measuring computational time, superior performance corresponds to lower
values rather than higher ones. When algorithm A requires less processing time than
algorithm B, algorithm A demonstrates better efficiency. This relationship explains why
TimeRatio values approaching the zero signal GA’s advantage: the genetic algorithm
completes its calculations faster than the exhaustive search method. Conversely, when
TimeRatio exceeds one, the brute-force technique proves more time-efficient than the
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genetic approach. The same principle applies to performance metrics, where we measure
distances and superior results correspond to smaller numerical values.

Per f ormance =
Brute-Force Distance

Genetic Algorithm Distance
(4)

Time Ratio =
Brute-Force Time

Genetic Algorithm Time
(5)

Based on the results obtained, as shown in Figures 4 and 5, the GA achieves accuracy
comparable to brute-force while requiring significantly less computational time. The X-axis
for both graphs shows how many ground sensor stations are used in each scenario.

More specifically in Figure 4 we see that the total traveled distance generated when
the GA is used to predict a starting point is a near match of that of brute-force, ranging
from 97% to 100%.
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Figure 4. The extent to which the GA approximated the brute-force results (800 tests).
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Figure 5. Time ratio indicating GA’s speed advantage over brute-force (800 tests).
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Additionally, as shown in Figure 5, the computational cost (consumed time) of the
genetic algorithm is significantly lower than that of the brute-force method, with TimeRatio
of the GA over brute-force methods being in the range of [0.00004490, 0.00021891] thus
indicating the clear superiority of the GA approach, as previously discussed.

In a qualitative approach of the evaluation of our experimentation, we have to note
that while the brute-force method guarantees the exact optimal solution, its computational
cost becomes prohibitive for large-scale problems. In contrast, the genetic algorithm

• Provides a near-optimal solution with accuracy levels exceeding 97%.
• Drastically reduces computation time, achieving results up to 4 orders of magnitude

faster than brute-force.

This balance of accuracy and efficiency makes the GA an ideal choice for large-scale
sensor network optimization problems, where real-time or near-real-time decision-making
is crucial. A quick view of the findings is summarized in Table 2.

Table 2. Summary of findings.

Metric Brute-Force Genetic Algorithm Advantage (GA)

Accuracy (Distance) Exact solution 97% to 100% Near-optimal

Computation Time Prohibitively High Significantly lower 4 orders of
magnitude faster

Finally, the process of optimizing launch pad positioning and route assignment us-
ing the GA finds strong methodological support in the recent literature on truck–drone
coordination. In their extensive review, Dang et al. [19] identify metaheuristic algorithms—
including the GA, ACO [33], PSO, and SA [34]—as the predominant approaches for solving
real-world variants of vehicle routing problems under operational constraints such as time
windows, battery limits, and synchronization requirements. These methods are particularly
well-suited for handling the mixed-integer nonlinear nature of location-routing problems
in continuous space. The findings of our study, which demonstrate the GA’s ability to
approach optimal solutions with substantial reductions in computational time, echo the
broader consensus on the effectiveness of metaheuristics in complex, hybrid routing en-
vironments. This reinforces the relevance of our contribution to the UAV and logistics
optimization communities.

4.3. Solidifying the Results

To further validate our findings and address potential concerns about the reliability of
our initial experiment, we conducted an extended analysis that accounted for the inherent
stochastic nature of genetic algorithms. Building on our work in [5], we expanded our
testing methodology by executing each of the 800 tests an additional 10 times using the
genetic algorithm approach, resulting in a comprehensive dataset of 8000 total executions.

By calculating the average performance across these multiple iterations, we were able
to minimize the impact of random variations inherent in GA operations and obtain more
statistically robust results. This approach enables us to present findings with increased
confidence intervals and reliability metrics.

The extended results, consistent with our preliminary findings, confirm the effective-
ness of the GA-based approach in identifying near-optimal starting points with significantly
reduced computational requirements. As illustrated in Figure 6, the performance consis-
tency of the GA approach demonstrates remarkable stability across multiple iterations,
with average accuracy values consistently ranging between 96.7% and 100% when com-
pared to the ground truth established by the brute-force method.
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Figure 6. The extent to which the GA approximated the brute-force results (8000 tests).

Furthermore, Figure 7 presents the average computational time comparison between
both approaches, highlighting the substantial efficiency advantage maintained by the GA
method even when accounting for multiple executions. This temporal advantage remains
consistently within the previously identified range, confirming the GA’s superiority in
terms of computational efficiency.
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Figure 7. Time ratio indicating GA’s speed advantage over brute-force (8000 tests).

A particularly illuminating metric is presented in Figure 8, which depicts the average
number of attempts required by each method to converge on an optimal or near-optimal
solution. While the brute-force approach necessitates a comprehensive evaluation of all
potential starting points within the bounding box, the GA achieves comparable results
with dramatically fewer attempts—requiring only a fraction of the computational effort
expended by the exhaustive search method.
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Figure 8. Average number of attempts for brute-force and GA (8000 tests).

Finally, to establish the statistical significance of our findings, we employed the
Wilcoxon Signed-Rank Test [35] to compare the total distances produced by the brute-
force method against those generated by the GA across all test cases. This non-parametric
statistical hypothesis test was selected due to its robustness in comparing paired samples
without assuming normal distribution. The extremely small p-value (3.86 × 10−14 < 0.05)
indicates that the differences between the brute-force distance and GA distance are sta-
tistically significant. However, it is important to note that although these differences are
statistically significant (i.e., not due to random chance), they are small in absolute mag-
nitude, as evidenced by the GA achieving 97–100% accuracy relative to the brute-force
method. This validates that the GA consistently produces solutions that, though systemati-
cally different from the optimal, remain of high practical quality and require only a fraction
of the computational resources.

Across numerous test runs, we observed steady performance that confirms the GA-
based approach’s dependability. This consistency validates its practical application in opera-
tional scenarios where processing power and timing limitations must be carefully managed.

The expanded analysis not only strengthens our initial findings on the GA’s effective-
ness but also provides a more solid basis for applying this method in real-world drone
deployment scenarios.

4.4. Taking It Further
4.4.1. Smart Initial Population

The initial population generation in genetic algorithms constitutes a pivotal stage
that can significantly influence both convergence speed and solution quality. In our cur-
rent implementation, the initial population is created by using randomly generated (X,Y)
coordinates. Although this ensures diversity, relying solely on randomness in early gener-
ations can limit convergence efficiency. To address this, we incorporate problem-specific
knowledge to seed the initial population more intelligently. For example, using geometri-
cally significant positions-such as the Area Center, All Stations Centroid [36], All Stations
Geometric Median [37], Bounding Box Center, Convex Hull [38] Centroid, and Convex
Hull Geometric Median, we can offer a head start towards optimal spatial configurations.
Furthermore, structured spatial sampling techniques could improve population diversity
while concentrating on high-value regions. For example, a spiral pattern starting from the
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center of the area and expanding outward toward the operational boundary could provide
systematic coverage with a gradually decreasing density of points.

Similarly, the selection of the Adam Chromosome—the prototype individual used to
seed the initial population—presents another opportunity for optimization. Rather than
random assignment, utilizing a theoretically favorable position such as the Geometric
Median of the Convex Hull could accelerate convergence by providing the evolutionary
process with an advantageous starting point.

These refinements essentially constitute a “warm start” approach for the GA, concen-
trating computational resources on the most promising regions of the solution space from
the outset (smart initial population). By incorporating domain knowledge into the initializa-
tion phase, our supplementary experiments demonstrate that both convergence speed and
solution quality can be further enhanced, particularly for complex spatial distributions or
when operating under stringent computational constraints. The data collected from these
additional tests (8000) indicate acceleration in convergence (see Figure 9) when compared
to purely random initialization strategies while maintaining comparable accuracy levels
(see Figure 10).
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Figure 9. Comparing the number of attempts for convergence when using random initial population
against smart initial population (8000 tests).

While our smart initialization strategy demonstrates modest improvements (approxi-
mately 2% reduction in convergence attempts), several limitations constrain its effectiveness.
Our approach assumes relatively uniform station distributions across the operational area.
In scenarios with heavily clustered station configurations, geometrically significant posi-
tions like centroids may fall within dense clusters rather than strategically advantageous
locations, potentially biasing the genetic algorithm toward suboptimal regions. The current
implementation uses fixed geometric positions (area center, convex hull centroid, etc.)
without considering the underlying spatial structure of station distributions. This approach
may not capture the optimal diversity needed for complex spatial configurations.

For heavily clustered station distributions, we propose a two-stage approach: first,
apply clustering algorithms such as k-means [39] or DBSCAN [40] to identify station groups,
then seed initial chromosomes at cluster centroids and boundaries to ensure coverage of
both dense and sparse regions. Different initialization strategies may be optimal for
varying problem sizes. Small-scale problems might benefit from geometric centroids,
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while large-scale deployments could require hierarchical seeding approaches that consider
multiple spatial scales. Combining deterministic geometric positions with strategic random
sampling in high-potential regions could balance exploration with informed initialization.
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Figure 10. Comparing the performance achieved by the GA when using random initial population
against smart initial population (8000 tests).

These enhancements represent natural extensions of the current methodology that
could yield more substantial improvements in convergence characteristics while maintain-
ing the theoretical foundation established in our current work. The modest gains observed
with basic geometric seeding suggest considerable potential for more sophisticated initial-
ization strategies tailored to specific problem characteristics and spatial distributions.

4.4.2. Striking the Right Balance

As already mentioned, there exists a critical relationship between solution quality (per-
formance gain) and computational expenditure (time required to complete the operation).
Figure 2 illustrates that higher quality solutions can be achieved by increasing the number
of generations, which consequently increases the number of attempts and completion
time. However, this approach introduces inefficiencies: with excessively high generation
counts (exceeding 300), the algorithm often continues running long after convergence,
wasting computational resources; conversely, with insufficient generations (fewer than 50),
the algorithm terminates prematurely, sacrificing potential quality improvements.

To address these limitations, we investigated an adaptive termination criterion
(40,000 tests) that stops the algorithm when no fitness improvement occurs over a specified
number of consecutive generations. This approach aims to dynamically balance quality
and efficiency by responding to the actual convergence behavior rather than relying on
predetermined thresholds. Our experimental results, presented in Figure 11, demonstrate
the effectiveness of this adaptive approach across various stagnation thresholds.

The data reveals several significant patterns. First, even with a minimal stagnation
threshold of 5 generations, the algorithm achieves 98.8% solution quality (performance
achieved) while requiring only 227 attempts—dramatically fewer than the 3713 attempts
needed when using a fixed threshold of 100 generations. This represents approximately a
94% reduction in computational effort while sacrificing less than 0.5% in solution quality.
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Figure 11. Impact of fitness stagnation-based termination criteria on solution quality and computa-
tional effort (40,000 tests). Number of attempts (left axis, dashed line); performance achieved (right
axis, solid line).

As the stagnation threshold increases, we observe incrementally higher solution
quality accompanied by proportionally larger computational demands. A threshold of
80 generations yields marginally superior results (99.3% quality) but requires 22 (5026 ÷ 227)
times more attempts than a threshold of 5 generations. This result shows how additional
computational work brings smaller and smaller improvements, a common trend in many
optimization problems.

The relationship between the stagnation threshold and computational effort appears
nearly linear, while quality improvements follow a logarithmic pattern—each doubling of
computational effort yields progressively smaller quality gains. This characteristic makes
the stagnation threshold an excellent tuning parameter for practitioners to adjust based on
their specific requirements for solution quality versus computational constraints.

For time-sensitive applications where near-optimal solutions suffice, lower stagna-
tion thresholds (5–10) offer exceptional efficiency. Conversely, applications demanding
maximum precision might justify higher thresholds (40–80), particularly when computa-
tional resources permit extended processing time. These findings underscore the value of
adaptive termination criteria in evolutionary algorithms, particularly for applications like
drone deployment optimization where both solution quality and computational efficiency
represent critical operational factors.

4.4.3. Mitigating Local Minima

To address concerns regarding local minima and premature convergence, our imple-
mentation incorporates several mechanisms designed to enhance global search capabilities.
We employ uniform crossover with a mixing probability of 0.5, which promotes thorough
exploration of the solution space by ensuring balanced genetic material exchange between
parent chromosomes. The adaptive termination criterion monitors convergence progress
and terminates when no improvement occurs over five consecutive generations, allow-
ing the algorithm to escape potential plateaus while preventing excessive computational
expenditure on converged solutions.

Furthermore, our smart initial population initialization strategy draws chromosome
seeds from geometrically significant positions, including area centroids, convex hull medi-
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ans, and bounding box centers. This approach distributes candidate launch pad positions
more uniformly across high-value regions rather than relying solely on random initial-
ization, thereby improving the likelihood of discovering globally optimal solutions while
reducing the risk of clustering around local optima.

4.4.4. Comparative Analysis with Alternative Metaheuristics

Although genetic algorithms were selected based on solid theoretical foundations
and their proven effectiveness in location-routing applications, a thorough evaluation
requires examining alternative metaheuristic approaches. We therefore implemented
and evaluated Particle Swarm Optimization and simulated annealing using identical
experimental conditions to those applied in our genetic algorithm studies.

Parameter Configuration and Sensitivity Analysis

Before conducting comparative studies, we performed comprehensive sensitivity
analyses to identify optimal parameter settings for each algorithm. For the PSO imple-
mentation, we systematically examined different parameter combinations according to the
specifications outlined in Table 3.

Table 3. Parameter values in PSO sensitivity analysis.

Parameter Values Description

Social Coefficient 1, 1.5, 2, 2.5

This parameter controls how much the particle is
influenced by the best solution found by its
neighbors in the swarm. Higher values make
particles more likely to move toward the swarm’s
best known position.

Cognitive Coefficient 1, 1.5, 2, 2.5

Determines how much the particle is influenced
by its own best known position. Values between 1
and 2.5 are commonly used in PSO
implementations.

Inertia Weight 0.4, 0.6, 0.7,
0.8, 0.9

Controls the momentum of the particle,
with higher values allowing more exploration
and lower values favoring exploitation.
The range covers typical values used in the
literature.

Total Iterations
300, 500,
1000, 1500,
2000

The maximum number of iterations the algorithm
will run. More iterations allow for better
convergence but increase computation time.

Swarm Size 10, 30, 50,
75, 100

Number of particles in the swarm. Larger
swarms can explore more space but require more
computational resources. These values represent
common swarm sizes used in practice.

Following exhaustive testing across all feasible parameter combinations (totaling
16,000,000 experimental runs), we assessed performance metrics for each configuration.
The outcomes are illustrated in Figure 12.

Based on our analysis of these results, we determined the optimal parameter configu-
ration shown in Table 4, which serves as the foundation for PSO algorithm execution.

Similarly, for simulated annealing, we conducted parameter tuning experiments
(encompassing 1,000,000 tests) focusing on cooling rate schedules and initial temperature
settings as shown in Table 5.
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Figure 12. Results from the sensitivity analysis for the PSO parameters. (a) Number of iterations to
converge. (b) Cognitive Coefficient. (c) Inertia Weight. (d) Social Coefficient. (e) Number of particles
used or swarm size.

Table 4. PSO Parameter Configuration.

Parameter Value

Social Coefficient 1
Cognitive Coefficient 2.5

Inertia Weight 0.9
Total Iterations 1000

Swarm Size 30

Table 5. Parameter values in SA sensitivity analysis.

Parameter Values Description

Cooling Rate 0.9, 0.93, 0.95,
0.97, 0.99

Controls the rate at which the temperature decreases.
A value of 0.99 means the temperature reduces by 1%
each iteration, allowing gradual convergence.

Total Iterations 100, 300, 1000,
2000, 5000

The maximum number of iterations for the algorithm.
Higher values improve solution quality but increase
computation time.

Temperature 100, 500, 1000,
2000, 5000

Initial temperature for the annealing process. Higher
temperatures allow more exploration, while lower
temperatures focus on exploitation.

Our sensitivity analysis for SA (depicted in Figure 13) revealed that a cooling rate of
0.99 combined with an initial temperature of 500 provided the most consistent convergence
behavior across diverse problem sizes. The final parameter configuration for SA execution
is presented in Table 6.
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Figure 13. Results from the sensitivity analysis for the SA parameters. (a) Number of iterations to
converge. (b) Cooling rate. (c) Temperature.

Table 6. SA parameter configuration.

Parameter Value

Cooling Rate 0.99
Total Iterations 1000
Temperature 500

For the genetic algorithm comparative evaluation, we employed the parameter con-
figuration outlined in Table 1, with the following modifications: Rather than utilizing the
number of generations as the termination criterion, we implemented the fitness stagnation
approach with a threshold value of 10, as detailed in Section 4.4.2. We also employed the
smart populations as described in Section 4.4.1.

Comparative Methodology and Iteration Metrics

To ensure fair comparison across the three metaheuristic approaches, we employed
optimal parameter configurations for each algorithm as determined through extensive
sensitivity analyses. It is important to clarify the interpretation of “iterations” across
different algorithms: for PSO, the total fitness evaluations equal the product of iterations
(1000) and swarm size (30 particles), resulting in 30,000 total evaluations per problem
instance. For SA, iterations directly correspond to fitness evaluations (1000). For the GA,
we employed adaptive termination with a fitness stagnation threshold of 10 generations,
allowing the algorithm to terminate when no improvement is observed over 10 consecutive
generations, as detailed in Section 4.4.2.

This difference in termination criteria is not an experimental artifact but reflects each
algorithm’s optimal operational characteristics. The fixed iteration counts for PSO and
SA represent the configurations that yielded their best performance across our sensitivity
analyses, while adaptive termination represents a fundamental algorithmic advantage of
our GA implementation—its ability to recognize convergence and terminate efficiently
without sacrificing solution quality.

Experimental Results and Performance Analysis

Figure 14 presents the comparative performance results across the three metaheuristic
approaches, evaluated using the same 800 test scenarios employed in our primary genetic
algorithm evaluation. The performance metrics represent the accuracy achieved relative
to the brute-force ground truth, while iteration counts indicate the computational effort
required for convergence.
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Figure 14. Charts depicting the net effect of each algorithm. (a) Performance of each algorithm.
(b) Number of iterations that each algorithm took in order to converge.

The experimental results reveal several critical insights regarding algorithmic perfor-
mance and computational efficiency. PSO demonstrates the highest average solution quality
at 99.87%, marginally exceeding both genetic algorithms (99.11%) and simulated annealing
(98.54%). However, this superior performance comes at a substantial computational cost,
requiring 30,000 iterations per problem instance compared to the adaptive convergence
exhibited by genetic algorithms.

Computational Efficiency Considerations

The iteration requirements present a striking contrast between the three approaches.
Genetic algorithms demonstrate remarkable efficiency with an average of 527 iterations re-
quired for convergence, representing approximately 57 times fewer iterations than PSO and
nearly twice the efficiency of simulated annealing. This computational advantage becomes
particularly pronounced in operational scenarios where time constraints and computational
resources are limiting factors. The fixed iteration approach employed by both PSO and SA,
while ensuring consistent computational bounds, reveals inherent inefficiencies in their
convergence characteristics. PSO’s requirement for 30,000 iterations to achieve optimal
performance makes it computationally prohibitive for real-time applications, despite its
marginally superior solution quality. The excessive iteration count suggests that PSO’s con-
vergence behavior is poorly suited to the continuous coordinate optimization aspects of our
launch pad positioning problem. Simulated annealing occupies an intermediate position,
requiring 1000 iterations consistently across all problem sizes. While more efficient than
PSO, SA’s fixed iteration schedule lacks the adaptive termination capabilities demonstrated
by our genetic algorithm implementation. The declining performance of SA the increase
in problem complexity, particularly evident in the 100-station scenarios where accuracy
drops to 93.95%, indicates limitations in its exploration mechanisms for high-dimensional
search spaces.

Algorithmic Behavior Analysis

The performance degradation patterns observed across increasing problem complexity
provide additional insights into each algorithm’s suitability for launch pad optimization.
Genetic algorithms maintain relatively stable performance across varying problem sizes,
with accuracy remaining above 96% even for large-scale scenarios. This consistency stems



Information 2025, 16, 897 24 of 30

from the population-based exploration mechanism that maintains diversity throughout the
evolutionary process.

PSO’s consistently high performance across all problem sizes demonstrates the effec-
tiveness of swarm intelligence principles for continuous optimization problems. However,
the computational cost associated with maintaining large swarm populations for extended
iteration counts undermines its practical applicability.

Simulated annealing exhibits the most pronounced performance degradation with the
increase in problem complexity. The temperature-based acceptance mechanism, while effec-
tive for escaping local optima in smaller search spaces, appears insufficient for maintaining
solution quality in larger problem instances. The cooling schedule optimization becomes
increasingly critical as the problem size grows, yet our sensitivity analysis revealed limited
improvement potential within reasonable computational bounds.

Validation of Initial Algorithm Selection

These comparative results strongly validate our initial selection of genetic algorithms for
launch pad positioning optimization. While PSO achieves marginally superior solution quality,
the 57-fold increase in computational requirements renders it impractical for operational
applications where timing constraints are paramount. The adaptive termination capabilities
of genetic algorithms provide an optimal balance between solution quality and computational
efficiency, characteristics essential for real-world drone deployment scenarios.

The modular integration between genetic algorithm chromosome encoding and mTSP
fitness evaluation, as discussed in our initial rationale, proves advantageous compared
to the more complex parameter tuning requirements observed in PSO and SA implemen-
tations. The natural representation of launch pad coordinates within genetic algorithm
chromosomes facilitates direct integration with existing mTSP solvers, while PSO’s particle
position vectors and SA’s solution state representations require additional transforma-
tion mechanisms.

Furthermore, the adaptive population size and termination criteria employed in our
genetic algorithm implementation demonstrate superior resource utilization compared
to the fixed parameter approaches necessitated by PSO and SA. This adaptability proves
particularly valuable in operational environments where computational resources and time
constraints vary based on mission requirements and available hardware configurations.

4.5. Limitations

While our study demonstrates the computational effectiveness of genetic algorithms
for optimizing launch pad positioning in drone operations, several important limitations
must be acknowledged that affect the direct applicability of our findings to real-world
UAV deployments.

The most significant limitation of our approach is the assumption that minimizing
travel distance directly correlates with minimizing energy consumption. This fundamen-
tal simplification abstracts away the complex energy dynamics that characterize actual
UAV operations. In reality, energy consumption in unmanned aerial vehicles depends on
numerous interconnected factors that extend far beyond simple geometric distance calcu-
lations. Wind conditions represent one of the most critical factors affecting UAV energy
consumption [41]. Headwinds can increase energy requirements compared to still-air
conditions, while tailwinds can provide substantial energy savings. Crosswinds intro-
duce additional complexity by requiring course corrections and increased control effort
to maintain desired trajectories [42]. Our current model does not account for prevailing
wind patterns or seasonal variations that would significantly influence optimal launch pad
positioning in operational environments.
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Terrain elevation and altitude changes introduce another layer of complexity that
our 2D distance-based approach cannot capture. Climbing to higher altitudes requires
substantial energy expenditure, while descending allows for energy recovery in some
UAV configurations [43]. The presence of hills, valleys, or urban structures can create
significant variations in energy consumption even for routes with identical horizontal
distances. Furthermore, altitude changes affect air density and atmospheric conditions,
which directly impact propulsion efficiency and battery performance.

Battery dynamics present additional challenges that our simplified model does not
address. Lithium-ion batteries, commonly used in UAVs, exhibit non-linear discharge char-
acteristics where available energy decreases with temperature, discharge rate, and battery
age [44]. Cold weather conditions can further reduce available energy [45]. These factors
would necessitate dynamic adjustments to launch pad positioning strategies based on
environmental conditions and mission profiles.

Payload variations significantly influence energy consumption patterns in ways that
our distance-minimization approach cannot capture. Heavier payloads require more energy
for both propulsion and altitude maintenance, while payload distribution affects aerody-
namic efficiency. Medical supply deliveries, surveillance equipment, and agricultural
sensors each present unique weight and aerodynamic characteristics that would influence
optimal launch pad positioning differently [46].

Flight maneuvers and speed profiles represent another area where our simplified
model falls short of real-world complexity. Aggressive acceleration and deceleration
patterns consume substantially more energy than smooth, consistent flight profiles [47].
Hovering operations, often required for data collection or precision delivery, can con-
sume more energy per unit time compared to forward flight. Our current approach does
not differentiate between mission segments that require hovering versus those involving
continuous forward motion [48].

Our study also assumes perfect knowledge of station locations and static operational
conditions, without accounting for positional uncertainty, measurement noise, or GPS inac-
curacies. In practice, target locations may shift due to changing operational requirements,
equipment failures, or access restrictions. Dynamic mission requirements would necessi-
tate adaptive launch pad positioning strategies that can respond to changing conditions
in real-time. Evaluating robustness under noisy environments represents an important
direction for future research before operational deployment.

Despite these limitations, our work provides a valuable foundation for understanding
the computational aspects of launch pad optimization and establishes a baseline method-
ology that can be extended to incorporate these real-world complexities. The genetic
algorithm framework we present is sufficiently flexible to accommodate additional con-
straints and objectives as more sophisticated energy models are developed.

Future research should focus on integrating these real-world factors into compre-
hensive energy consumption models. This might include developing weather-aware
optimization algorithms, incorporating terrain elevation data, and modeling battery perfor-
mance under varying conditions. Such extensions would transform our current geometric
optimization approach into a truly energy-aware deployment strategy suitable for practical
UAV operations.

Our findings should therefore be interpreted as addressing a simplified baseline sce-
nario that demonstrates the potential for computational optimization in UAV deployment
planning, rather than a complete solution ready for immediate operational deployment.
The substantial computational advantages demonstrated by our genetic algorithm approach
suggest that even more complex, realistic optimization problems could be addressed effi-
ciently using similar methodologies.
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5. Conclusions
This study has demonstrated the significant impact of strategic launch pad positioning

on drone mission efficiency in multi-drone operations. Our research establishes that
optimizing the launch pad location can substantially improve operational performance
through reduced travel distances and better route assignments. By comparing brute-force
methods with genetic algorithm approaches, we have shown that near-optimal solutions
can be achieved with dramatically reduced computational overhead.

The genetic algorithm implementation consistently achieved 97–100% accuracy com-
pared to exhaustive search methods while requiring computational resources reduced by
up to four orders of magnitude. This represents a crucial advancement for real-world
applications where both solution quality and time/computational efficiency are essential
operational factors.

Our exploration of refinements to the basic GA revealed additional opportunities
for performance enhancement. The implementation of smart population initialization
strategies demonstrated modest improvements in convergence speed while maintaining
comparable accuracy levels. Similarly, adaptive termination criteria showed promise in
further balancing solution quality with time/computational demands, with even minimal
stagnation thresholds of five generations achieving 98.8% solution quality while reducing
computational effort by approximately 94% compared to fixed generational approaches.

These findings have significant implications for drone deployment strategies in vari-
ous application domains. Beyond the computational advantages, optimizing launch pad
positioning signals a shift in how we approach the problem—moving from simply opti-
mizing routes to optimizing the entire deployment strategy. This shift encourages system
designers to think about the complete operational structure when creating energy-aware
drone systems, rather than focusing solely on optimizing flight paths.

5.1. Future Work

The findings presented in this study establish a foundation for strategic launch pad
positioning in drone operations, yet they simultaneously reveal numerous avenues for
advancing this research toward more comprehensive and practically applicable solutions.
The computational efficiency demonstrated by our genetic algorithm approach provides
an encouraging basis for tackling increasingly complex optimization challenges in UAV
deployment strategies.

5.1.1. Integration of Realistic UAV Energy Dynamics

The most pressing direction for future research involves developing sophisticated en-
ergy consumption models that transcend the simplified distance-based approach employed
in our current work. Rather than assuming direct proportionality between travel distance
and energy expenditure, future iterations should incorporate comprehensive physical
models that account for the multifaceted nature of UAV energy consumption. This enhance-
ment would require integrating terrain elevation data and transitioning from 2D to 3D
path planning algorithms. Digital elevation models could be incorporated into the fitness
function to provide more accurate energy estimates that reflect real-world topographical
challenges. Wind modeling represents another critical advancement opportunity. Meteo-
rological data integration would allow the optimization algorithm to consider prevailing
wind patterns, seasonal variations, and real-time weather conditions. Future work should
explore dynamic wind field modeling and its integration with launch pad positioning
strategies. Battery dynamics modeling constitutes an equally important research direction.
Developing energy consumption models that account for these factors would enable more
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accurate optimization of launch pad positions based on expected operational conditions
and fleet battery health status.

5.1.2. Dynamic and Adaptive Launch Pad Strategies

Our current approach assumes static launch pad locations throughout mission dura-
tion, yet many operational scenarios would benefit from dynamic repositioning capabilities.
Future research should investigate scenarios where launch pads can be relocated during
missions, introducing temporal optimization dimensions that could significantly enhance
operational flexibility. Mobile launch pad platforms, such as ground vehicles or ships,
present particularly interesting research opportunities. Dynamic positioning algorithms
could continuously optimize launch pad locations based on changing mission require-
ments, weather conditions, or operational constraints. This would require the development
of real-time optimization algorithms capable of handling moving reference points and
evolving objective functions. Adaptive algorithms that respond to unexpected events or
changing conditions represent another promising research direction. Mission requirements
may change due to equipment failures, weather developments, or priority shifts that neces-
sitate rapid reconfiguration of launch pad positions. Future work should explore machine
learning approaches that can predict optimal repositioning strategies based on historical
data and current operational contexts.

5.1.3. Hybrid Optimization Algorithms

While genetic algorithms demonstrate excellent performance in our current implemen-
tation, future work should explore hybrid approaches that combine evolutionary computa-
tion with other optimization methodologies. Such hybrid methodologies could leverage
the GA’s global search capabilities while incorporating local optimization techniques to
fine-tune solutions in promising regions. Variable neighborhood search or iterative local
search could be integrated as post-processing steps to further minimize the risk of local
minima while maintaining the structural advantages of the GA framework.

Machine learning integration presents another avenue for algorithmic enhancement.
Reinforcement learning approaches could be employed to adaptively adjust genetic algo-
rithm parameters based on problem characteristics and solution progress.

5.1.4. Advanced Genetic Algorithm Refinements

Building upon the genetic algorithm improvements identified in our current work,
future research should investigate weighted selection mechanisms that combine Elite
Selection with diversity-promoting approaches such as Roulette Wheel Selection [49] or
Stochastic Universal Sampling [50]. This could address potential premature convergence
issues while maintaining the advantages of elite selection. Gaussian Mutation [51] operators
represent another promising enhancement direction. Unlike Uniform Mutation, Gaussian
mutation provides more controlled parameter adjustments that could improve convergence
characteristics, particularly when dealing with continuous coordinate spaces.

The research directions outlined above represent a comprehensive roadmap for ad-
vancing launch pad positioning optimization from the current computational foundation
toward practically applicable solutions that address the full complexity of real-world UAV
operations. Each direction offers significant potential for improving operational efficiency
while addressing the limitations identified in our current work.
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